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Abstract,

Finding the “right” number of clusters, &, for a data set is a difticult, and often
ill-posed, problem. In a probabilistic clustering context, likelihood-ratios, penalized
likelihoods, and Bayesian techniques are among, the more popular techniques. In this
paper a new cross-validated likelihood criterion is investigated for determining clus-
ter structure. A practical clustering algorithim hased on Monte Carlo cross-validation
(MCCV) is introduced. The algorithm pernits the data analyst to judge if there is
strong, evidence for a particular k, or perhaps weaker evidence over a sub-range of &
values. Fxperimental vesults with Gaussian mixtures on real and simulated data sug-
gest that MCCV provides genuine insight into cluster structure. v-fold cross-validation
appears inferior to the penalized likelihood method (BIC), a Baycesian algorithm (Au-
toClass v2.0), and the new MCCV algorithm. Overall, MCCV and AutoClass appcar
the most reliable of the methods. MCCV provides the data-miner with a uscful data-
driven tool which complements the fully Bayesian approach: in particular, the method
is conceptually simpler to adapt 1o more complex clustering models beyond Gaussian
mixtures.

1 Introduction

Cluster analysis is the process of automatically scarching for natural groupings in a dat a set
and extracting characteristic desceriptions of these groups. 1 is afundamental knowledge
discovery process.  Clustering algorithms (0f which there are many) typically consist of  a
specification of hoth (1) a eriterion for judging the quality of a given grouping and (2) a
scarch M ethod {for optimizing this criterion given data (see Jain and Dubes (1988) for an
overview).

A particularly vexing question, which is often glossed over in published descriptions o f
clustering algorithms, is “‘howaly clusters arc thereinthe data 2+, Fori nal mietliods
for finding the “optimal” 11111111 >er of clustersare fro'. Furihermore, “optimality” cary he
difficult to pin down in this context without some assumptions being Made. One viewpoint
is that the problem of finding the best number of clusters is fundamnentally i-Qlefined and
best avoided (cf. Gelman et al | page 424, in a mixture modelling context). While we
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sympathize with this view weadopt a more pragmatic app roachin this paper, namely, let
thedatatell us as much as possible about. cluster structure, including the munber of clusters
inthe data. If cither the data are too few, or the measurcmnent dimensions too noisy, then
thedata may 1ot reveal 1 1111¢11. 120w(ew, when tlie data contain interesting stru cture one
seek S an algorithimic techmique which can revea] thisstructure. A fundamental point is thal,
the process of structure discovery indata needsto Locinleractive, i.e., the data analyst inust
interpret the results as they see fit.

In this paper we limit, our attention to Ganssian mixture 1models: however, any 1)I0lEL-
1 H»ilistic clustering model {for which a likelihood function cari he defined is amenable to the
] roposedapproacl),  The method could conceivalbhly be ext ended { o clustering algorit Inns
which do not possess clear prohabilistic seiantics (suchi as the k-1 ncans clustering algo-
rithm), but this is not pursued here.

2 Probabilistic Clustering Using Mixture Models

2.1 Finite Mixture Models

The prohabilistic mixture modelling approach to clustering, is well-known: oncassumes {hat
the data arc gencerated by a lincar combination of component density functions resulting in
a mixture probability density function of the form:

.
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where x is a particular value of a d-dimensional feature vector X, A is the nuinber of
components in the model, f; are the parameters associated with density component g, the
«j are the “weights” for cach component, j, and &y, = {ay,.. ,ap, b, o , 01} denotes the set
of haramncters for the overal model. We will adopt the not ation that @), denotes parameters
which have been e stimaled from data. It is asswined that 2. aj:=1anday > 0, 1<j <k,
The component density functions are often assu ned to he multivariate Gaussian with
parameters ; = {l’j’ Y1 } where 1 and 33; are the mean and covariance matrix, respectively.
Thus the mean I specifies the localion of the jth component density in feature space and
thie covariance matrix 32; preseribes how tile data 1)clonging to component j are typically
(2 ig] »ersed or scatteredaround /-~ The flexibility of this model has led to its widespread
application, particu larly in applied statistics (Mcl ach Jan and Basford 1988), and more
recently inmachine learning and knowledge discovery (Cheeseimnan and Stutz 199G).

2.2 Estimating the Clusters from 1 Jata
Clustering (in this mixture model context) is as follows:

1. Assume that the data are generated by amixture model, where cach component. is
interpreted as a cluster or class w; and it assumed that cach data point must have
1Lreengenerated by oncand Only one of the classes w.

2. Given a data sct where it is not known which data point s caime {from which cor npo-
nents, infer the characteristics (the parameters) of the underlying density functions
(theclusters) .




In particular, given an “unlabelled” data set D = {a;y, . . . . 25}, and assuming that the
number of clusters k and the functional forins of” the component densities g; in Fquation
1 are fixed, estimate the model paramcters (j),\_. Given <]A>;,, one can then calculate the
probability that data point @ belongs to class w; (1hy 1 3ayes’ rule):
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where 0 denotes an estimate of the true parameter 0. lere, G = plwy), i.c., an estimate of
the marginal or prior for cach cluster. Since the mixture likelihood (or posterior) surface
(as a function of the parameters) can have many local maxima, and no closed form solution
for the global maximun exists, parameter estimation for mixtures is non-trivial. Much of
the popularity of mixture models in recent years is due o the existence of efficient iterative
estimation tecmiques (in particular, the expectation-maximization (M) algorithm).

2.3 Choosing the Number of Clusters £

Al Hove we haveassuinect that &k, the munber of clust ers, 1S known a priori. While there
may be situations where k is known, one would often like to determine & from the data if
possible. I’rior work on automnatically finding k can roughly be divided into three categories,

The classical app roach is based on hypothesis testing, where hypothesis b states that the
underlying density IS a mixture of & components. A's discussed in Titterington, Sith and
Makov (1 985, Scction 5,4), these techniques are largely unsatisfactory due to the “failure
of stanidard regularity conditions” on the mixture likelihood function.

A sccond approach is the full Bayesian solution where the posterior probability of each
value of % is calculated given the data, priors onthe mixture parameters, and priors on k it~
self. A potential difficulty with this approach js the computational cotplexity of integrating
over the Darameter space to get the ] osterior probabilities on k. The AutoClass algorit Inn
(Cheeseman and Stutz 19W) uses various approxitnations to get around the computational
issucs. Samnpling technigues have also been applied to this problem with some success (cf.
Dicholt. and Robert. 1994).

A third method (related to 1 3ayesian approach) is that of penalized likelihood (such as
the 31C and MD1./MML criterig). A penalty termis added Lo the log-likelihood Lo henalize
the nmumber of’ parameters (¢. g., Sclove 1983). A significant hroblem hiere is that the general
assimnptions underlying the asymptotic optimality of the penalized criteria do not hold in
the mixture modelling context.

Intheory, the full 1 3aycsian ap) woach jg fully optimal and probably the most. useful
of the three methods listed al >ove. However, in practice it IS cumbersome to implement,
it is not necessarily straightforward 1o extend to non-Gaussian Prohlans with delendent
samples, and the results will 1 e dependent in @ non-transparent manner on t he guality of
the underlying approximations or simulations. Thus, there is cert ainly room for exploring,
alternative methods.

3 Cross-Validated Likelihood for Choosing &

Lot f () bethe “rue” probability density function for . Tet DD ={ay, ...« 2Ny bearandon
sa1 nple from f. Consider that we fit a set. of finite mixture models with & components to




1), wlhiere k ranges from 110 Fyax. Thus, we have an indexed set of estimated models,
Je(@|Pr), 1<k < kypax, where cach i (2|@p) has been fitted to dataset 1.
The data log-likelihood for the thimodel is defined as

N . N .
Lp(D) = ]08‘(“ fk(-ilfi|q’/.-)> = > log fi (). (3)
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Assume that the parameters for the kil mixture model were estimated by maximizing this
likelihood as a function of @, keeping the data I fixed (standard maxinmun likeliliood
estimation). We then get that 1., (12) is a nou-decreasing, function of £ since the increased
flexihility of more mixture components allows hetter fit to the data (increased likelihood).
Thus, 1. (1)) can not directly provide any clue ast o thelrue mixturestructureinthedata,
if suchstructure exists? .

Imagine that we had a large test data set D' which is not used in fitting any of the
111)(1('1s. 1 et Ly (D' be  the log-likelihood as defined in Fquation 3, where the models
arce fit to the training data D but the likelihood is evaluated on D' We can vim® { his
likelihood as a function of the “parameter” L) keeping all other parammeters and D fixed.
Intuitively, this “test likelilicod” should be a more useful estinnator (than the training data
likelihood) for comparing mixture models with different munbers of components.

1 lowever, in practice, we caunot aflord, or do not have availahle, a large independent
test set suchiras 1) ¢, l.et j/Z." be a cross-validation estimate of Ly, (D! ) we discuss in t he
next section the particulars of how ]A,‘A’.” is calculated. What cani ]A,,‘f’ t ell us about how close
themodel fi (2]@4) is 1o the true data-generating density /7 Following Silverman (1986,
p.H3) and Chow, Geman, and Wu (1 983) , it can be shown under appropriate assumptions

hiad .
that 1D [LZ‘} ~- I [/ (@) log :fl\-((,:'l(j(.j)’}\-){h

where C is a constant independent of & and fi.(2]|®1), and the expectation 19 1s taken with
respect, to all random samples of size Ny generated from the true density f(2). Ny is the
amount of data used o train the model, which in a cross-validation setup will he less than

N.

e @)

The term in square brackets is the Kullback-Leibler (IK-1) information distance hetween

I(@) and [y, (x|®1), namely 1(f, (@), (S, [1(91)) is strictly positive unless f - T (dp).

Thus, the & which minimizes 1(/, /1 (Pr)) tells us which of the mixture models is closest to

the true density f. IFrom Equation 4, 1£¢ is an approximately unbiased estimator (within
a constant) of the expected value of the K-1, distance - I(f, [x(Pr)). Given that [ (and
I(f, f1:(®4))) is unknown, maximizing L§" over k is a rcasonable estimnation strategy and is

the approach adopted in this paper.

4 A Monte Carlo Cross-Validated Clustering Algorithm

4.1 Choosing a Particular Cross-Validation Method

‘1°11(12°( arcseveral possible cross- validation nethods one could use to gellc’'rate 1.4 v-fold
cross validation (vCV) consists of partitioning the data into v disjoint subsets. v » |
yields {he well-klIfmv]l “leave-onc-oul” cross validated estinnator, but this is well-known to

Mradit ionally this is the departure point for penalized likelihood and likelihood ratio testing D¢t hods,




sufler froin high variance. v = 10 has been a popular choice in practice (e.g., the CART
algorithin for decision tree classification). I Monte Carlo cross validation (MCCV)  the
data arc partitioned M times into digjoint train and test subsets where the test subset s
a fraction # of the overall data (Burman 1989, Shao 1 993). The key distinction bet ween
MCCV and vCV is that in MCCV the diflerent test subsets are chosen randomly andneed
not. be disjoint. Pypically 4 can be quite large, c.g., 0.5, andlnmdreds 017 thousands of
runs (M) can be averaged. Inthe regression context it was shown by Shao (1 993) that
keeping, 3 relatively large reduces estination variability in t he test dat a (compared o vCV
methods). Intuitively, the M CCV  estimates should be unbiased (being an average of M
individually unbiased estimates) and have desirable variance properties: however, {11(1' ¢ are
few theoretical results available on MCCV ingeneral and none o] 1 MCCV in a likelihood
estirnation context.

4 .2 Specification of the MCCV Algorithm

The algorithm operates as follows. The outer loop consists of M cross- validation runs over
M randomly -chosen {rain/test partitions. For each partition, k is varied from 1 t () Fuax
andthe EM algorithmn is used to fit the k components to the training data.

The XM algorithm is initialized using a variant of the k-means algorithin, which is
itsell initialized randomly. To avoid local minia, the Z-means algorithim 1S run f times
(default value is r= 10) from different starting points and the highest likelihood solution
used to hegin the BM estimation. The BM est iination IS constrained away from singular
solutions in parameter space Loy limiting the diagonal elements of the component covariance
matrices Y to be greater than ¢ (default value is ¢ = 0.001 owhereoist he standard
deviation of the unclustered data inthe relevant dimension). The XM algorithn it crates
until the change inlikeliiood is less than § (default value is 8= 10 ©), or up to @ prespecified
maximunn number of iterations (default is 30), whichever occurs fivst. Keeping the maximum
munber of BM iterations sanall allows for quicker execution of the algorithin: the intuition
is that since weare averaging multiple cross-valid ation g, it is suflicient that the 1M
cstimates be soy newhere near a peak in the likelihood surface  this assmnplion warrants
further investigation.

Fach of ihe fitted models with &k components are then applied to the utiseen data in
the test partition, and the test-data log-likelihood (Iiguation 3) is calculated for eat]]. A's
indicated earlier, this is repeated M imes, and the M cross-validated estimates are avera ged
for cach % Lo arrive at ]A/if’,] < < ke Simiilarly the st andard deviation over the A runs
can be calculated for cach k, indicating the variability of the likelihood est imates.

The data analyst can plot the ]A/Z’;“ as a function of & along with the standard deviations
tosce What! the data says al out the 1)11111] »er of clusters.  Anothiey approach is o roughly
calculate the posterior probabilities for cach b, where one cflectively assut nes equal priors
onthe values Of Kt .

N co
sk <SP
Yopmrexp(gY)

1 < I8 § ]"m:lX'

If one of the p(k|D)’s is ncar1, then there is strong evidence for t hat particular munber
(f clusters. If the p(k|D)’s are more spread out , thenthe data are not” ablet o resolve the
cluster structure, although “bunching” al »out a particular k value may allow one t o focus
on a Sill)-1'allge of k. It is not reconmmended that the procedure heimplemented asa“l lil(li-
150x” where simply the maxinmun & value is reported: the distribution of p(k[1) is essential
to interpreting the results.




The complexity of the XM algorithm for fixed k is O(kd? N 12) where d is the diimensional-
ity of the data, and 14 denotes the average number of iterations of the KM algorithim. Thus,
the overall computational complexity of the MCOV clustering algoritlin is (M2 d? N 1),
i.c., lincar in the mimbaer of samples N assuming that I+ does not depend on N,

5 Expcrimental Results

5.1  Overall Experimental Mcthodology and Caveats

The MCCV algorithinm was cevaluated on both simulated and real data sets. Unless stated
otherwise, the algorithm was run with M = 20 (the number of runs) and f = 0.5 (the
fraction of data left out in cach run). The value of M = 20 was chosen for pragimatic reasons
{0 reduce simulation time (the MCCV procedure is carrently coded in MATLAB which is
not particularly cfficient). The value of = 0.5 was based on some initial experimentation
which suggested that keeping the cross-validation train and test partitions roughly the saince
size gave better results than the more “traditional” 90/10 type partitions. Details of these
experiments are omitted here due to lack of space.

Three other methods were compared Lo MCCV: AutoClass v2.0 ({fromn the authors at
NASA Ames), vCV (with v = 10), and BIC (using the standard (¢, /2) log N penalty term
where gy is the munber of parameters in the mixture model with & components). The v-CV
and BIC methods used the same version of the 10M algoriting as MCCV. The maximum
munber of classes for cach of the algorithing (ky.x) was set to 8 or 15, depending on the
truce nunber of classes in the data.

It is important to note that all of the algorithhns have random conmiponents. The ini-
tialization of the XM algorithim (used by each of the clustering algorithms) for fixed & is
based on randomnly choosing £ initial cluster means. The cross-validation algorithims con-
tain Turther randomness in their choice of particular partitions of the data. Finally, the
siimulated data sets can he regenerated randomly according to the probability model. An
ideal set of experiments would average over all of these sources of randommness: this is in
progress but has not been completed at the time of writing of this paper. Thus, although
the results quoted here are for single-runs, they nonetheless provide clear insight into the
general behavior of the algorithnms,

Experiments were run on relatively small-sample, low-dimensional data sets (Figure 1).
Irom a data mining viewpoint this may scem uninteresting. In fact, the opposite is true.
Small sample sizes arce the most challenging problems for mecthods which secek to extract
structure from data (since the MCCOV algorithm scales roughly lincarly with sample size,
scaling up Lo massive data sets does not pose any particular problems). The focus on low-
dimensional problems was driven by a desire 1o evaluate the method on problemns where
the structure can casily be visualized, the availability of well-known data sets, and the use
(in this paper) of full-covariance Gaussian models (which scale poorly with dimensionality
from an estimation viewpoint). For all data sets the classes are roughly equiprobable.

¥inally due to space limitations we only summnarize the experimental results obtained,
nainely, provide the value of & which maximizes the relevant eriterion for cach algorithm.
Note that, as discussed in the previous section, this is not the recommmnended way Lo use the
MCCV algorithin: rather the full posterior probabilitics and variances for cach & should be
reported and interpreted by the user.
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Figure 1: Scatter plots of data sets used in experiinents.




TO(IL | Sample Size [BIC | AC | oCV | MCCV || Truth
|-class 50 1 1 2 1 !
200" 1 1|1 1 !
800 o 1] 5 1 !
2-class 100 1 1 4 1 2
600 2 2 3 2 2
1200 2 2 3 2 2
3-Class 100 3 3 4 3 3
600 3 3 3 3 3
1200" 3 3 4 3 3
4-Class 100 2 3 5 3 4
500 3 4 | 5 4 4
1000 4 4 6 4 4

Table 1. Kxperimental results on simulated da

5.2 Details of Ixperiments on Simulated Data

Table 1contains a brief sunmary of the experimental results on simulated data.

Ioxperiment 1 consisted of a “comtrol” experiment: data from a single 2-dimensional
Gaussian (with 2 = 1 (the identity matrix)). BIC, AutoClass, and MCCV correctly deter-
mined the presence of only a single class. vCV on the other hand exhibited considerable
variability and incorrectly detected multiple clusters. In general, across different experi-
ments, the vCV method (with v= 10) was found {o be an umreliable estimator compared to
the other methods.

The sccond simulation problem consists of 2 Gaussian clusters in 2 dimensions, both
with covariance matrices ¥y = Yo = T and means juy = (0,0), 009 = (0,3). There is
considerable overlap of the clusters (Ifigure 1(a)) making this a non-trivial problem. MCCV
finds evidence of only one cluster with N = 100, but. for N = 600, 1200 it corrcectly finds hoth
clusters. This conservative tendency of the MCCV algorithm (whereby it finds evidence to
support fewer clusters given less data) is pleasing and was noted to occur across diflerent
data scts. B1C and AutoClass detected the same number of clusters as MCCV: vCV was
consistently incorrect on this problem.

The 3-Class problemn (IFigure 1(h)) follows the simulated Gaussian structure (in two
dimensions) nsed in Banfield and Raftery (1993). Two of the clusters are centred at (0,0)
bul arce oriented in “orthogonal” directions. The third cluster overlaps the “tails” of the
othier two and is centred to the right. MCCV, BIC and AutoClass cach correctly detected
3 clusters: once again, vCV was not reliable.

The final simulation problem (Figure 1(c¢)) contains 4 classes and is taken from Ripley
(1994) where it was used in a supervised Jearning context (here, the original class labels
were removed). vCV s again unreliable. Fach of BIC, MCCV and AutoClass “zero-in” on
the correct structure given enough data, with B1C appearing to require more data to find
the correct structure.




Table 2: Experimental results or non-simulated data.

[ Problem | Sample Size || BIC | AC | oCV | MCCV || Truth ||
s |10 2 s |2 s
Diabetes 145 4 |3 | 3 3 3
Vowels | 671 2 | 5 | 8 KA Y

5.3 Real Data Scts

Below we discuss the application of MCCV (and the comparison methods) to several real
data scts. Table 2 contains a brief simmary of the results. Fach of these data scts has a
known classification: the clustering algorithms were run on the data with the class label
information removed.  Note that unlike the simulated examples, the munber of classes
in the original classified data set is not necessarily the “correct” answer for the clustering
procedure, e.g., it is possible that the a particular class in the original data is best described

by two or more “sub-clusters,” or that the clusters are in fact non-Gaussian.

5.3.1 1Iris Data

The classic “iris” data set containg 150 4-ditnensional measurenments of plants classified into
3 species. It is well known that 2 of the species are overlapped in the feature-space and the
other is well-separated from these 2 (FFigure 1(d)). MCCV indicates 2 clusters with some
evidence of 3. AutoClass found 4 clusters and Ble found 2 (the fact that oCV found 3
clusters is probably a fluke). 1t is quite possible that the clusters are in fact non-Gaussian
and, thus, do not match the clustering model (e.g., the mecasurements have limited precision,
somewhat invalidating the Gaussian assumption). Given these caveats, and the relatively
small sample size, cach of the methods are both providing useful insight into the data.

5.3.2 Diabetes Data

Reaven and Miller (1979) analyzed 3-dimensional plasma measurement data for 145 subjects
who were clinically diagnosed into three groups: normal, chemically diabetic, or overtly
diabetic. This data set has since been analyzed in the statistical clustering literature by
Symons (1981) and Banfield and Raftery (1993). When viewed in any of the 2-dimensional
projections along, the measurciment axes, the data are not separated into obvious groupings:
however, some structure is discernible (Iigure 1(e¢)). FThe MCCV algorithin detected 3
clusters in the data (as did vCV aud AutoClass). B1C incorrectly detected 4 classes. 1
is enconraging that the MCCV algorithm found the same number of classes as that of
the original clinical classification.  We note that the “approximate weight of evidence”
clustering criterion of Banficld and Raftery (1993) (based on a Bayesian approximation)
was maximized at & = 4 clusters and indicated evidence of between 3 to 6 clusters.

5.3.3 Speech Vowel Data

Peterson and Barney (1952) mecasured the location of the first and sccond prominent. peaks
(formants) in 671 cstimated spectra from subjects speaking varions vowel sounds. T'hey
classified the spectra into 10 different vowel sounds based on acoustic considerations. This
data set has since bheen used in the neural network literature witli the best cross-validated
classification accuracies being around 80%. As cau be seen in Figure 1(f) the classes are
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heavily overlapped. Thus, this is a relatively diflicult problem for methods which automati-
cally try to find the correct nuinber of clusters. AutoClass detected 5 clusters, while MCCV
detected 7, with some evidence between 6 and 9 clusters. BIC completely underestimated
the nmimber of clusters at 2. Given the relatively sinall samnple size (one is fitting cach cluster
using, only roughly 30 sample points), the MCCV algorithin is doing well to indicate the
possibility of a large number of clusters.

6 Discussion

The MCCV method perforined roughly as well as AutoClass on the particular data sets
used in this paper. The BIC method perforimed quite well, but overall was not as reliable
as MCCV or AutoClass. vCV (with v= 10) was found to be largely unreliable. Further
experimentation on more complex problems may reveal some systematic differences hetween
the Bayesian (AutoClass) and cross-validation (MCCV) approaches, hut both produced
clear insights into the structure of the data sets used in the experiments in this paper.

The theoretical basis of the MCCV algorithin warrants further investigation. Tor ex-
ample, MCCV is somewhat similar to the hootstrap method. A useful result would be a
characterization (under appropriate assumptions) of the basic bias-variance propertics of
the MCCV likelihood estimate (in the mixture context) as a function of the leave-out frac-
tion /3, the number of cross-validation runs M, the sample sizve N, and some measure of
the problem complexity. Prescriptive results for choosing /7 automatically (as developed in
Shao (1993) in a particular regression context) would be useful. For example, it would he
usclul to justify in theory the apparent practical utility of 3= 0.5.

On the practical front, clearly there is room for iimprovement over the basic algorith
deseribed in this paper. The probabilistic cluster models can casily be extended bheyond
the full-covariance model to incorporate, for example, the geometric shape and Poisson
“outlier” models of Baufield and Raftery (1993) and Celeux and Govaert (1995), and the
discrete variable models in AutoClass. Diagnostic tests for detecting non-Gaussianity could
also casily be included (c¢f. MclLachlan and Basford (1988), Section 2.5) and would be a
uscful practical safeguard.

Some obvious improvements could also be made to the scarchi strategy.  Instead of
“Dlindly” scarching over cach possible value of & from 1 1o ky,ax a more intelligent search
could be carried out which “zeros-in” on the range of & which has appreciable posterior
probability mass (the current hmplementation of the AutoClass algorithm includes such a
scarch algoritlhim).

Data-driven methods for automatically sclecting thie leave-out fraction method 3 are also
a possibility, or possibly averaging results over maltiple values of 5. When the data are few
relative to the number of clusters present, it is possible for the cross-validation partitioning
to produce partitions where no data from a particular cluster is present in the training
partition. This will bias the estimate towards lower b values (since the more fractured the
data hecomes, the mnore likely this “pathology” is to occur). A possible solution is some
form of data-driven stratified cross-validation (Kohavi (1995) containg a supervised learning
implementation of this idea).

Both the 1'M and MCCV techniques are ainenable to very coflicient parallel implementa-
tions. For large sample sizes N it is straightforward to assign 1/p of the data to p processors
working in parallel which commmunicate via a central processor. For large nunbers of cross-
validation runs M, cach of p processors can independently run M /p runs.
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Finally we note that our attention was initially drawn to this problem in a time-serie
clustering context using hidden Markov models. In this comtext, the general MCCV method-
ology still applics but, hecause of sample dependence the eross-validation partitioning strat-
cgy must be modified  this is currently under developient. The MCCV approach 1o mix-
tures described here can also bhe applied 1o supervised learning with mixtures: the MCCV
procedure provides an automatic method for determining how many components to use to
model cach class. Other extensions to learning of graphical models (Bayesian networks)
and image scgmentation are also possible.

7 Conc usions

luster structure i a
probabilistic clustering context. Experimental results indicate that the method has signif-
icant practical potential. T

MCCV clustering appears to be a useful technique for deternining

he method complemnents Bayesian solutions by being siimpler
to impleinent. and conceptually casier to extend to more complex clustering models than
Gaussian mixture
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